In situ electrochemistry

Posted on

Electrochemical processes are uniquely complex, especially in the confinement of nanopores and in regards to structural changes during ion insertion / intercalation. Our team, in close collaboration with collaborators, employs (1) in situ small angle scattering, (2) electrochemical dilatometry, (3) electrochemical quartz crystal microbalance with dissipation monitoring, (4) in situ Raman spectroscopy, and (5) nuclear magnetic resonance spectroscopy.

Further reading:

  • N. Jäckel, B. Krüner, K.L. van Aken, M. Alhabeb, B. Anasori, F. Kaasik, Y. Gogotsi, V. Presser, Electrochemical in situ tracking of volumetric changes in two-dimensional metal carbides (MXenes) in ionic liquids, ACS Applied Materials & Interfaces 8(47) (2016) 32089-32093. (Link)
  • C. Prehal, C. Koczwara, N. Jäckel, A. Schreiber, M. Burian, H. Amenitsch, M.A. Hartmann, V. Presser, O. Paris, Quantification of ion confinement and desolvation in nanoporous carbon supercapacitors with modelling and in situ X-ray scattering, Nature Energy 2(3) (2017) 16215. (Link)
  • N. Shpigel, M.D. Levi, S. Sigalov, O. Girshevitz, D. Aurbach, L. Daikhin, P. Pikma, M. Marandi, A. Jänes, E. Lust, N. Jäckel, V. Presser, In situ hydrodynamic spectroscopy for structure characterization of porous energy storage electrodes, Nature Materials 15(5) (2016) 570-575. (Link)