New paper published on “Unraveling the Electrochemical Mechanism in Tin Oxide/MXene Nanocomposites as Highly Reversible Negative Electrodes for Lithium-Ion Batteries” in Advanced Materials Interfaces.
As the demand for power and energy storage continues to grow, we researchers are constantly exploring new ways to improve battery performance. One promising approach involves using conversion/alloying materials, such as tin oxide, to design high-performance lithium-ion batteries. While these materials show excellent performance and ease of preparation, they often suffer from mechanical instabilities during cycling that limits their usefulness. This issue can be addressed (and overcome) by combining tin oxide with MXene.
In this study, we prepared a 50/50 (by mass) tin oxide / Ti-MXene (SnO2/Ti3C2Tz) nanocomposite and optimized it as a negative electrode for lithium-ion batteries. The result? A nanocomposite that delivers over 500 mAh/g for 700 cycles at 0.1 A/g and demonstrates excellent rate capability, with 340 mAh/g at 8 A/g.
The success of this nanocomposite lies in the synergistic behavior of its two components, which we confirmed through ex situ chemical, structural, and morphological analyses. Not only does this knowledge allow us to formulate a reaction mechanism with lithium-ions that provides partial reversibility of the conversion reaction, but it also opens up new possibilities for designing high-performance lithium-ion batteries.
Thanks to our great team of collaborators:
Team Ricerca sul Sistema Energetico – RSE SpA & Università degli Studi di Milano-Bicocca:
Antonio Gentile
Chiara Ferrara
Stefano Marchionna
Riccardo Ruffo
Team INM-Leibniz Institute for New Materials:
Stefanie Arnold
Volker Presser
Team Karlsruhe Institute of Technology (KIT)
Yushu Tang
Julia Maibach
Christian Kübel