New paper published in Journal of the American Ceramic Society on oxide/carbon hybrid electrodes for Lithium-ion batteries

New paper published in the Journal of the American Ceramic Society on the synthesis of new hybrid electrode materials for Li-ion batteries (LIBs). Through controlled oxidation of layered Ti2SnC, we were able to obtain TiO2-SnO2-C/carbide hybrid materials using two different methods: partial oxidation in an open-air furnace (OAF) and rapid thermal annealing (RTA). The resulting carbide phase included both residual Ti2SnC and TiC as a reaction product. In testing, we found that the sample oxidized in the OAF at 700°C for 1 hour had the highest initial lithiation capacity of 838 mAh/g at 100 mA/g. However, its delithiation capacity decreased to 427 mAh/g over cycling. In contrast, the RTA sample treated at 800°C for 30 seconds demonstrated the most efficient performance, with a reversible capacity of approximately 270 mAh/g after 150 cycles and a specific capacity of about 150 mAh/g under high cycling rate (2000 mA/g). Our findings suggest that this processing method could have wide-ranging applications in energy storage, particularly for other members of the MAX family. This work was the latest product of collaboration with the team of Michael Naguib (Tulane University, USA).

New paper published on solid lubrication of carbon nanotubes in ACS Applied Nano Materials

New paper published in ACS Applied Nano Materials. Rolling bearings need lubrication to operate smoothly, but when traditional methods fail, multiwall carbon nanotubes (MWCNT) can come to the rescue. To understand how MWCNTs lubricate highly loaded contacts, we combined experimentation and large-scale molecular dynamics simulations. We applied tribometry to iron plates coated with different types of MWCNTs, discovering that both resulted in a steady-state coefficient of friction of 0.18. Wear tracks and tribolayers revealed a transformation process, resulting in layers of MWCNT fragments, iron oxide, and iron carbide nanoparticles embedded in an amorphous carbon matrix. We also found that MWCNTs slide against the ball interface to provide low carbon transfer to the counter body. Molecular dynamics simulations predicted a low-load regime that keeps MWCNTs intact, and a high-load regime that partially collapses the tube structure, forming a-C regions. We confirmed the results through transmission electron microscopy, and formulated a multistep lubrication mechanism for MWCNT coatings rubbing against alumina on an iron substrate. This work was done in collaboration with the teams of Frank Mücklich and Michael Moseler.