,

New paper published in Journal of Energy storage on the recycling of MXene battery electrodes

New paper published in Journal of Energy Storage on MXene battery electrode recycling.

Even the most wonderful electrode material, some sooner than later, will degrade. Even the most wonderful battery, regardless of the used chemistry, will see the end of its life. Battery recycling, using hydrometallurgical or pyrometallurgical pathways, is very energy consuming. So are there alternative recycling concepts? Of course there are! But many of them remain poorly explored.

New materials may not just allow better performance but also novel recycling and second-life applications. The diverse 2D material MXene, for example, can be processed into battery electrodes without binder and without conductive additive. It does not need them 😉 With 100% active mass, and associated with a 2D material, MXene is an ultimate case for an assembly-disassembly-reassembly material. Our work shows the benefits (and limitations) to this circularity of MXene batteries for lithium-ion and sodium-ion batteries.

But sometimes, even with the most heartfelt effort, recycling has its limits. No worries, though, MXenes can also have a second-life! If you oxidize materials, such as titanium based MXene, you end up with metal oxide & carbon (carbide) hybrids that show promising applications for electrocatalysis (or other energy applications).

More MXene and more recycling works upcoming! Stay tuned and I hope more people start not just exploring fancy battery materials but also what to do with spent electrodes. Only time will tell which approach will master upscaling and economic challenges but we, as scientists, must explore all possible pathways.

Big shoutout to my former Ph.D. student Yunjie Li (now in Ulm with Dominic Bresser), our Ph.D. student Stefanie Arnold, and our former Postdoc Dr. Samantha Husmann (now in industry).