New paper published in ChemSusChem on high-performance Lithium-ion battery electrodes based on polyoxomolbydate and self-activation

New paper published in ChemSusChem in collaboration with the Kickelbick-Group at Saarland University. We have developed an exciting new class of inorganic-organic hybrid materials with redox-active components that have great potential for use in lithium-ion batteries (LIBs). The materials were prepared using an aqueous precipitation reaction of ammonium heptamolybdate (AHM) with para-phenylenediamine (PPD), and a low-energy continuous wet chemical synthesis process known as the microjet process. By varying the ratio of molybdate to organic ligand and pH, we were able to produce two different crystalline hybrid products with large surface areas in the submicrometer range and high purity and reproducibility on a large scale. The first product, [C6H10N2]2[Mo8O26] ⋅ 6 H2O, was obtained by using a ratio of para-phenylenediamine to ammonium heptamolybdate from 1 : 1 to 5 : 1. The second product, [C6H9N2]4[NH4]2[Mo7O24] ⋅ 3 H2O, was obtained by using higher PPD ratios from 9 : 1 to 30 : 1. Our electrochemical testing revealed that the second product showed exceptional battery performance, with a high capacity of 1084 mAh/g at 100 mA/g after 150 cycles. The product reached maximum capacity after an induction phase, which can be explained by a combination of a conversion reaction with lithium to Li2MoO4 and an additional in situ polymerization of PPD. We are excited about the potential of this hybrid material for use in LIB applications.