Expanding the 2D flatlands: toward MBene Li- and Na-ion batteries 🔋

In our ongoing research to identify sustainable technological alternatives 🌱, we have explored the potential of layered boride materials (MoAlB and Mo2AlB2) for their use in Lithium-ion and Sodium-ion batteries (LIBs and SIBs) 🔬. Great to see our Open Access paper now appeared in print in Small Methods! 🖨️

Some key findings from the paper include:
👉Unlike MXene, no HF is needed for the 3D-to-2D etching reaction🧪
👉Sodium hydroxide treatment applied to MoAlB results in a porous morphology 🍯, leading to higher specific capacities than its original form
👉Mo2AlB2 showcases a more promising specific capacity compared to MoAlB for LIBs, registering a specific capacity of 593 mAh/g after 500 cycles at 200 mA/g ⚡
👉When it comes to SIBs, Mo2AlB2 demonstrated a specific capacity of 150 mA/g at 20 mA/g 📊.
These findings underscore the potential of layered borides as an interesting electrode materials for both LIBs and SIBs, and illuminate 🔦 the significance of surface redox reactions in Li storage mechanisms.

A sincere thank you 🙏 to our amazing partners for their invaluable contributions and collaboration.

Tulane University:
Ahmad Majed
Chukwudi Nwaokorie
Karamullah Eisawi
Audrey Buck
Matthew Montemore
Michael Naguib

INM-Leibniz Institute for New Materials:
Mohammad Torkamanzadeh
Volker Presser

Berkeley Lab:
Chaochao Dun
Jeff Urban

New paper published in a special issue of Energy Technology on battery research ontology. This work offers a logical framework that seamlessly integrates with digital architecture, enabling efficient visualization, correlation, and prediction capabilities in battery production, research, and development.

The ontology employs a predetermined terminology to specify materials and processes, establishing a chain of unit processes that connect raw materials to the final products of battery cell production. Moreover, it facilitates the attachment of analytical methods, known as characterization methods, to the relevant items. To ensure its suitability for both industrial-scale and laboratory-scale data generation and implementation, extensive workshops and interviews with battery materials and production process experts were conducted during its development.

The ontology encompasses the identification and definition of raw materials and intermediate products across all production steps, ultimately leading to the creation of the battery cell. Standard materials and process chains serve as the foundation for defining steps and items using commonly used terms. Furthermore, the research explores alternative structures and the integration of the ontology with existing ontologies.

New review paper published in Industrial Chemistry & Materials on utilizing the electrochemical quartz crystal microbalance (EQCM) to better understand the charge/discharge processes in supercapacitors.

Supercapacitors are renowned for their exceptional attributes, including high power density, fast charging capabilities, and remarkable cycling stability. To further enhance their potential, it is crucial to comprehend the intricacies of their charging processes. The EQCM, with its nanogram-level in situ mass change information, has played a pivotal role in unraveling these mechanisms.

Our paper provides a comprehensive review of the progress made in EQCM, covering theoretical fundamentals and its applications in supercapacitors. We also delve into the fundamental effects of ion desolvation and transport, shedding light on their impact on supercapacitor performance.

By thoroughly examining the advantages and limitations of EQCM in supercapacitors, we present a holistic view of this groundbreaking technique. Moreover, we propose future directions for further exploration in this dynamic field.

This work was done in collaboration with our long-time collaborator Guang Feng from the Interface and Transport Phenomena (ITP) Laboratory at Huazhong University of Science and Technology (HUST).

Lei Wang has successfully defended his Ph.D. thesis “Faradaic materials and processes for the electrochemical separation of alkali and alkaline earth metal ions”. Congratulations, Dr. Wang!