New paper published on iron vanadate derived from Prussian Blue analog for Lithium-ion batteries in Sustainable Energy & Fuels. This marks our latest work on derivatization strategies to turn Prussian Blue Analogs (PBAs) into mixed metal oxide materials for battery applications 🔋

🔹We used PBAs as they offer a very high tunability and ease of synthesis.
🔹We successfully achieved homogeneous iron vanadate derivatization using an energy-efficient infrared furnace with CO2 gas.
🔹We entangled the active material with carbon nanotubes to generate binder-free, free-standing electrodes for direct use as electrodes.
🔹We stabilized the electrochemical performance reaching a 400 mAh/g capacity at a specific current of 250 mA/g after 150 cycles, maintaining a Coulombic efficiency of 99.2% in a potential range of 0.01-3.5 V vs. Li/Li+.
🔹The choice of electrolyte matters (of course) also, with a better performance in Li-TFSI in carbonate electrolyte compared to Li-PF6.

For an in-depth understanding of our methodology and findings, I encourage you to read the full paper where we delve deep into the role of different surfactants and the optimization of various parameters for a stable electrochemical performance.

New paper published in Small on Cu/V-Organophosphonates. In this collaborative work, we report a layered redox-active, antiferromagnetic metal organic semiconductor crystals with the chemical formula [Cu(H2O)2V(µ-O)(PPA)2] (where PPA is phenylphosphonate). 

New paper published on hydrogel-based flexible energy storage in Advanced Materials Interfaces. Our study showcases a novel electrolyte system that stands out due to its flexibility, electroactivity, and improved sustainability.
We initiated our research by electropolymerizing polypyrrole (PPy) nanotubes in graphite-thread electrodes, utilizing methyl orange templates in an acidic medium. This process successfully enhanced the conductivity, while maintaining the flexibility of the electrodes, a crucial component in developing versatile energy storage systems. We built flexible devices using hydrogel as an electrolyte prepared from poly(vinyl alcohol) (PVA)/sodium alginate (SA). This hydrogel was obtained through freeze-thawing and swelling with ionic solutions. The result was a homogenous and porous hydrogel matrix, demonstrating high conductivity of 3.6 mS/cm as-prepared and the ability of self-healing.

What sets this material apart is its adaptability. The material’s electrochemical and mechanical properties depend on the swollen electrolyte used, allowing its integration with the modified graphite-thread electrodes. This flexibility led us to develop a quasi-solid electrochemical energy storage device, with a specific capacitance value of 66 F/g at 0.5 A/g. The choice of less environmentally friendly acid electrolyte HNO3 yielded a higher capacitance in the range of 100 F/g. These attributes relied on the liquid phase in the hydrogel matrix produced from biodegradable polymers.

We thank our collaborators who were instrumental in this research project. Special acknowledgment to our esteemed colleagues from the Departamento de Química, Universidade Federal do Paraná in Brazil: Andrei Elias Deller, Izabel C. Riegel-Vidotti, and Marcio Vidotti. On our team, we are grateful for the contributions of Ph.D. student Jean Gustavo De Andrade Ruthes, our postdoc and Humboldt-Fellow Emmanuel Pameté.

https://lnkd.in/ePKcpUYf

Volker Presser gives an online seminar with the title “Electrochemical Lithium-Ion Extraction” at DIFFER (Dutch Institute for Fundamental Energy Research).

We are very happy that Delvina Tarimo (PhD) has been awarded a research fellowship by the Alexander von Humboldt Foundation! Delvina will be carrying out work on nanoconfinement and lithium-sulfur batteries. Congratulations, Delvina, and thanks for choosing the INM-Leibniz Institute for New Materials and our team for your research!

The progressing electrification of water remediation: review article on electrosorption of organic compounds in Chemical Engineering Journal.
 
I am happy to see now-online our latest review paper, which summarizes the science and technology of electrosorption of organic compounds (EOC). Traditional methods of water treatment, such as adsorption, encounter limitations when it comes to effectively removing ionic and hydrophilic organic contaminants. Moreover, the lack of on-site regeneration techniques further hinders the efficiency of these methods. EOC not only enhances the adsorption performance but also enables green electricity-assisted regeneration of the adsorbent.
 
Over the past decades, the field of EOC has witnessed exponential growth in research studies. Many examples demonstrate that the application of electrical potentials can remarkably enhance the adsorption affinity, capacity, and kinetics of conductive carbon adsorbents. However, it remains unclear whether these effects are specific to certain compound classes or universally applicable, and the optimal criteria for designing EOC processes remain elusive.
 
In our research, we conducted a critical evaluation of the current state of the art in EOC, with a primary focus on active control of adsorption and desorption processes and their effects on both ionic and neutral organic compounds. By thoroughly considering compound speciation and surface chemistry of electrode materials, we gained mechanistic insights into the EOC process and highlighted the differences between electrosorption of inorganic and organic compounds.
 
We have also proposed insightful performance parameters and provided clear definitions to unify the rapidly expanding research in the EOC field. By doing so, we aim to establish a foundation for consistent analysis and evaluation of EOC techniques. Furthermore, we discuss potential application scenarios and outline future research directions to guide the development of this exciting technology. EOS, thereby, is not a one-size-fits-all solution for removing contaminants. However, it offers a valuable tool, particularly for tackling the challenges posed by hydrophilic and ionic organic contaminants, which often prove difficult for conventional adsorption processes.
 
Thanks to the great team of scientists authoring the work from the Helmholtz Centre for Environmental Research (UFZ): Navid SaeidiFalk Harnisch, Franz-Dieter Kopinke, Anett Georgi
 

Work of our group has been presented at the 6th International Conference on Battery Deionization & Electrochemical Separation (BDI&E 2023). Former group member, Prof. Choonsoo Kim, presented joint work on “Redox-mediated Electrodialysis for Valorization of Tetramethylammonium hydroxide (TMAH) from Semiconductor Wastewater”. Volker Presser gave an online talk on “Continuous and intermittent direct electrochemical lithium extraction”.

Stefanie Arnold has successfully defended her Ph.D. thesis “Next generation (hybrid) battery materials at the water/energy/recycling nexus”. Congratulations, Dr. Arnold!