new paper published in ACS Energy Letters on continuous electrochemical lithium-ion extraction. We used a redox electrolyte “engine” to drive the ion transfer (in our case: potassium ferricyanide). Employing a pair of ceramic lithium superionic conductor (LISICON) membranes meant that only Lithium ions were accessible to the redox electrolyte for charge compensation. And to complement the design, we used an anion exchange membrane to separate the inflow (e.g., seawater) from a recovery solution. By this way, we obtained an electrochemical system for the continuous extraction of Lithium ions. This sets this technology apart from earlier works (including our contributions) that relied on a cyclic operation to obtain ion separation. Yet, this is just one of many more steps towards seeing such technology toward application; future research must critically address cell design, optimization of the Li-membranes, and investigating the robustness and durability of continuous operation.
This work was the result of the collaboration of our Ph.D. students Lei Wang, Stefanie Arnold, Panyu Ren, and our former Postdoc (now group leader at Bavarian Center for Battery Technology (BayBatt)) Qingsong Wang, as well as our Chinese collaborators Jun Jin and Zahoyin Wen (Chinese Academy of Sciences).