,

New article published in Journal of Materials Chemistry A on high performance Mo(C,N,O)x Li-ion battery anodes

New article published in Journal of Materials Chemistry A on high performance Mo(C,N,O)x Li-ion battery anodes. Using a continuous wet-chemical process process called a microjet reactor, we combined ammonium heptamolybdate with para-phenylenediamine, tweaking the mix to get just the right results. After applying thermal annealing, we obtained Mo(C,N,O)x with stacking defects embedded in a carbonaceous matrix. Depending on the synthesis and annealing parameters, different morphologies and phases were observed. The best of our materials yielded a high capacity of 933 mAh/g after 500 cycles! 🔋

933 mAh/g after 500 cycles… so the initial capacity must have been higher? Actually, no! On the contrary, we s tarted with about 500 mAh/g, went down a bit and then almost doubled the capacity between the 100th and 500th galvanostatic charge/discharge cycle. This has to do with the “magic of molybdenum”, as we had seen similar effects of self-activation before.🔬

Big shoutout to Mana Abdirahman Mohamed, Oliver Janka, Jörg Schmauch, and Guido Kickelbick from Universität des Saarlandes for the exciting project . 🤝 Kudos to Stefanie Arnold for her patience with this project and her excellent expertise! 🌟 And a special thanks to the Leibniz Institute for Plasma Science and Technology (INP Greifswald) e.V. (Antje Quade) for X-ray photoelectron spectroscopy. 🙌