New battery published in ACS Applied Materials & Interfaces on sulfidized carbon spherogels for high performance lithium ion batteries

New battery published in ACS Applied Materials & Interfaces on hybridization of carbon spherogels with titanium oxide and sulfur enables high performance lithium-ion battery electrodes. As a result from our research project with Michael Elsaesser from the Paris Lodron Universität Salzburg, we introduce a novel approach to enhancing lithium-ion battery electrodes. We have successfully combined titanium oxide and sulfur with carbon spherogels, achieving high performance in terms of stability and capacity. Our method resulted in electrodes combining high charge storage capacity and electrical conductivity, while maintaining a core-shell morphology. The process involved producing carbon spheres encapsulating titania and sulfur using a template-assisted sol-gel route, followed by thermal treatment with hydrogen sulfide gas. This treatment fully preserved the microporous hollow sphere architecture of the carbon shells, facilitating sulfur deposition and titania crystal protection.