,

New paper published on MBene for photocatalytic applications

New paper published in Advanced Functional Materials in lead by the teams of Michael Naguib and Agnieszka Maria Jastrzębska. MBenes, a new class of post-MXene materials, stand out due to the inclusion of boron in their structure, replacing carbon and nitrogen. This distinct composition provides a fresh perspective on boron’s impact in two-dimensional materials. The challenge in processing MBenes lies in the wet-chemical etching and delamination of the initial MoAlB phase, mainly due to the strong bonding of aluminum with surrounding elements. This research successfully addresses this challenge by treating MoAlB with an aqueous HCl/H2O2 solution for varying durations of 24 hours, 48 hours, and 72 hours. The process results in individual, single-to-few layered MBene flakes, particularly notable in the 48-hour etched sample. Detailed analysis through a combination of theoretical and experimental X-ray diffraction techniques reveals that the optimally delaminated 48-MBene possesses a Mo2B2 orthorhombic lattice structure. Additionally, the formation of Mo oxide within these MBenes introduces both direct (1.2 eV) and indirect (0.2 eV) optical band gaps, significantly enhancing their photocatalytic efficiency. This is especially evident in their ability to decompose methylene blue, a commonly used organic pollutant, achieving about 90% decomposition under UV and simulated white light, with a rate thrice as fast as some MXene hybrids. Moreover, the 48-MBene shows exceptional capability in harnessing the full spectrum of visible light to generate reactive oxygen species. In contrast, the 24-hour and 72-hour treated MBenes exhibit lesser performance due to incomplete delamination or oxidation. These findings pave the way for using MBenes in environmental cleaning applications, highlighting their potential in addressing water contamination issues.