,

New paper on electrosynthesis of nitrogen fertilizer from algal biomass in Chemical Engineering Journal

New paper published in Chemical Engineering Journal on “A sustainable approach: Repurposing harmful algal biomass as carbon-based catalysts for nitrogen fertilizer electrosynthesis from nitrate and CO2“.

📜 Our research focuses on repurposing harmful algal blooms (HABs) biomass into carbon-based catalysts, specifically Cu1Mo1/NC, for the electrosynthesis of nitrogen fertilizers (urea and ammonia) from nitrate and CO2. This method not only addresses the environmental issue of HABs but also offers a sustainable approach to fertilizer production. The Cu1Mo1/NC catalyst demonstrated a high yield rate of 772 μg/h/mg(cat) for urea and 1531 μg/h/mg(cat) for ammonia, with a Faradaic efficiency of 68.4%.

🌐 The production of nitrogen fertilizers, essential for global food security, is currently dominated by energy-intensive processes such as Haber-Bosch, which contribute significantly to global CO2 emissions. Our approach explores how to mitigate these environmental impacts by using renewable resources and recycling waste. An approach like ours could potentially reduce CO2 emissions by millions of tons annually, equivalent to the emissions of hundreds of thousands of people.

🌱This study is a step towards sustainable agriculture, integrating renewable energy and waste recycling. Although the current system’s efficiency needs improvement to achieve positive profit and net CO2 emission reduction, it paves the way for future advancements in green and low-carbon fertilizer synthesis.

👩‍🔬👨‍🔬 Thanks to all of our partners: He Wang, Shuaishuai Man (who visited our laboratory 2021-2022), Han Wang, and Qun Yan.