,

New paper published in Separation and Purification Technology on the electrochemical recovery of lithium-ions from spent battery cells

New paper published in Separation and Purification Technology on “Optimized electrochemical recovery of lithium-ions from spent battery cells using carbon-coated lithium iron phosphate”. We optimized a system based on carbon-coated lithium iron phosphate electrodes. The electrodes selectively extract lithium ions from complex leaching solutions derived from real LCO (LiCoO₂) cathode materials. Over the course of 300 cycles, we observed an average lithium uptake capacity of about 11 mg of Li-ions per 1 gram of active material per cycle. We also demonstrated excellent selectivity toward lithium over competing ions like calcium and cobalt, which is critical in real-world leachates. Our optimized electrode materials and cycling strategies improve both the performance and lifetime of the electrochemical recovery system.

We acknowlege the contributions of all co-authors (Stefanie Arnold, Lei Wang, Dr Rudi Mertens, and Sascha Wieczorek).